Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 584
Filtrar
1.
PLoS One ; 19(3): e0299567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457412

RESUMO

Amyotrophic lateral sclerosis (ALS) is neurodegenerative disease characterized by a progressive loss of motor neurons resulting in paralysis and muscle atrophy. One of the most prospective hypothesis on the ALS pathogenesis suggests that excessive inflammation and advanced glycation end-products (AGEs) accumulation play a crucial role in the development of ALS in patients and SOD1 G93A mice. Hence, we may speculate that RAGE, receptor for advanced glycation end-products and its proinflammatory ligands such as: HMGB1, S100B and CML contribute to ALS pathogenesis. The aim of our studies was to decipher the role of RAGE as well as provide insight into RAGE signaling pathways during the progression of ALS in SOD1 G93A and RAGE-deficient SOD1 G93A mice. In our study, we observed alternations in molecular pattern of proinflammatory RAGE ligands during progression of disease in RAGE KO SOD1 G93A mice compared to SOD1 G93A mice. Moreover, we observed that the amount of beta actin (ACTB) as well as Glial fibrillary acidic protein (GFAP) was elevated in SOD1 G93A mice when compared to mice with deletion of RAGE. These data contributes to our understanding of implications of RAGE and its ligands in pathogenesis of ALS and highlight potential targeted therapeutic interventions at the early stage of this devastating disease. Moreover, inhibition of the molecular cross-talk between RAGE and its proinflammatory ligands may abolish neuroinflammation, gliosis and motor neuron damage in SOD1 G93A mice. Hence, we hypothesize that attenuated interaction of RAGE with its proinflammatory ligands may improve well-being and health status during ALS in SOD1 G93A mice. Therefore, we emphasize that the inhibition of RAGE signaling pathway may be a therapeutic target for neurodegenerative diseases.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Superóxido Dismutase-1 , Animais , Humanos , Camundongos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Modelos Animais de Doenças , Progressão da Doença , Camundongos Transgênicos , Estudos Prospectivos , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
2.
Complement Ther Med ; 81: 103027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336011

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a common complication of type 2 diabetes. Okra (Abelmoschus esculentus L) is reported to have anti-diabetic effects. The present study aimed to investigate the effects of dried okra extract (DOE) supplementation on lipid profile, renal function indices, and expression of inflammatory genes, as well as serum level of soluble Receptor for Advanced glycation end products (sRAGE) in patients with DN. METHODS: In this triple-blind randomized placebo-controlled clinical trial, 64 eligible patients with DN received either 125 mg of DOE or placebo daily along with DN-related nutritional recommendations for 10 weeks. Changes in kidney indices including proteinuria and estimated glomerular filtration rate (eGFR), lipid profile, serum SRAGE, as well as the expression of RAGE, ICAM-1, and IL-1 genes were measured over 10 weeks. RESULTS: After adjustment for the potential confounders, between-group analyses showed no significant differences in terms of lipid profile, kidney function indices, sRAGE, and RAGE-related inflammatory genes expression after 10 weeks. CONCLUSION: Daily 125 mg DOE along with nutritional recommendations on top of usual care did not lead to significant changes in renal function indices, lipid profile, and inflammatory genes expression in patients with DN.


Assuntos
Abelmoschus , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Abelmoschus/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/uso terapêutico , Rim/metabolismo , Lipídeos
3.
Respir Res ; 25(1): 93, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378600

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common respiratory disease and represents the third leading cause of death worldwide. This study aimed to investigate miRNA regulation of Receptor for Advanced Glycation End-products (RAGE), a causal receptor in the pathogenesis of cigarette smoke (CS)-related COPD, to guide development of therapeutic strategies. METHODS: RAGE expression was quantified in lung tissue of COPD patients and healthy controls, and in mice with CS-induced COPD. RNA-sequencing of peripheral blood from COPD patients with binding site prediction was used to screen differentially expressed miRNAs that may interact with RAGE. Investigation of miR-23a-5p as a potential regulator of COPD progression was conducted with miR-23a-5p agomir in COPD mice in vivo using histology and SCIREQ functional assays, while miR-23a-5p mimics or RAGE inhibitor were applied in 16-HBE human bronchial epithelial cells in vitro. RNA-sequencing, ELISA, and standard molecular techniques were used to characterize downstream signaling pathways in COPD mice and 16-HBE cells treated with cigarette smoke extract (CSE). RESULTS: RAGE expression is significantly increased in lung tissue of COPD patients, COPD model mice, and CSE-treated 16-HBE cells, while inhibiting RAGE expression significantly reduces COPD severity in mice. RNA-seq analysis of peripheral blood from COPD patients identified miR-23a-5p as the most significant candidate miRNA interaction partner of RAGE, and miR-23a-5p is significantly downregulated in mice and cells treated with CS or CSE, respectively. Injection of miR-23a-5p agomir leads to significantly reduced airway inflammation and alleviation of symptoms in COPD mice, while overexpressing miR-23a-5p leads to improved lung function. RNA-seq with validation confirmed that reactive oxygen species (ROS) signaling is increased under CSE-induced aberrant upregulation of RAGE, and suppressed in CSE-stimulated cells treated with miR-23a-5p mimics or overexpression. ERK phosphorylation and subsequent cytokine production was also increased under RAGE activation, but inhibited by increasing miR-23a-5p levels, implying that the miR-23a-5p/RAGE/ROS axis mediates COPD pathogenesis via ERK activation. CONCLUSIONS: This study identifies a miR-23a-5p/RAGE/ROS signaling axis required for pathogenesis of COPD. MiR-23a-5p functions as a negative regulator of RAGE and downstream activation of ROS signaling, and can inhibit COPD progression in vitro and in vivo, suggesting therapeutic targets to improve COPD treatment.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Pulmão/metabolismo , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo
4.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38175729

RESUMO

Intrahepatic macrophages in nonalcoholic steatohepatitis (NASH) are heterogenous and include proinflammatory recruited monocyte-derived macrophages. The receptor for advanced glycation endproducts (RAGE) is expressed on macrophages and can be activated by damage associated molecular patterns (DAMPs) upregulated in NASH, yet the role of macrophage-specific RAGE signaling in NASH is unclear. Therefore, we hypothesized that RAGE-expressing macrophages are proinflammatory and mediate liver inflammation in NASH. Compared with healthy controls, RAGE expression was increased in liver biopsies from patients with NASH. In a high-fat, -fructose, and -cholesterol-induced (FFC)-induced murine model of NASH, RAGE expression was increased, specifically on recruited macrophages. FFC mice that received a pharmacological inhibitor of RAGE (TTP488), and myeloid-specific RAGE KO mice (RAGE-MKO) had attenuated liver injury associated with a reduced accumulation of RAGE+ recruited macrophages. Transcriptomics analysis suggested that pathways of macrophage and T cell activation were upregulated by FFC diet, inhibited by TTP488 treatment, and reduced in RAGE-MKO mice. Correspondingly, the secretome of ligand-stimulated BM-derived macrophages from RAGE-MKO mice had an attenuated capacity to activate CD8+ T cells. Our data implicate RAGE as what we propose to be a novel and potentially targetable mediator of the proinflammatory signaling of recruited macrophages in NASH.


Assuntos
Hepatite , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo
5.
J Immunol ; 212(4): 576-585, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180084

RESUMO

SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-ß) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.


Assuntos
COVID-19 , Melfalan , SARS-CoV-2 , gama-Globulinas , Cricetinae , Humanos , Camundongos , Animais , Mesocricetus , Receptor para Produtos Finais de Glicação Avançada/genética , Síndrome Pós-COVID-19 Aguda , Camundongos Transgênicos , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças , Pulmão
6.
Int J Biol Sci ; 20(3): 880-896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250151

RESUMO

Osteosarcoma is an extremely aggressive bone cancer with poor prognosis. Nε-(1-Carboxymethyl)-L-lysine (CML), an advanced glycation end product (AGE), can link to cancer progression, tumorigenesis and metastasis, although the underlying mechanism remains unclear. The role of CML in osteosarcoma progression is still unclear. We hypothesized that CML could promote migration, invasion, and stemness in osteosarcoma cells. CML and its receptor (RAGE; receptor for AGE) were higher expressed at advanced stages in human osteosarcoma tissues. In mouse models, which streptozotocin was administered to induce CML accumulation in the body, the subcutaneous tumor growth was not affected, but the tumor metastasis using tail vein injection model was enhanced. In cell models (MG63 and U2OS cells), CML enhanced tumor sphere formation and acquisition of cancer stem cell characteristics, induced migration and invasion abilities, as well as triggered the epithelial-mesenchymal transition process, which were associated with RAGE expression and activation of downstream signaling pathways, especially the ERK/NFκB pathway. RAGE inhibition elicited CML-induced cell migration, invasion, and stemness through RAGE-mediated ERK/NFκB pathway. These results revealed a crucial role for CML in driving stemness and metastasis in osteosarcoma. These findings uncover a potential CML/RAGE connection and mechanism to osteosarcoma progression and set the stage for further investigation.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Receptor para Produtos Finais de Glicação Avançada , Animais , Humanos , Camundongos , Neoplasias Ósseas/genética , Carcinogênese , Produtos Finais de Glicação Avançada , Lisina , Osteossarcoma/genética , Transdução de Sinais/genética , Receptor para Produtos Finais de Glicação Avançada/genética
7.
Kidney Int ; 105(1): 132-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069998

RESUMO

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Diabetes Mellitus Experimental/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Inflamação
8.
In Vivo ; 38(1): 474-481, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148054

RESUMO

BACKGROUND/AIM: Lung cancer is a major cause of cancer-related deaths worldwide, and chronic inflammation caused by cigarette smoke plays a crucial role in the development and progression of this disease. S100A8/9 and RAGE are associated with chronic inflammatory diseases and cancer. This study aimed to investigate the expression of S100A8/9, HMBG1, and other related pro-inflammatory molecules and clinical characteristics in patients with non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: We obtained serum and bronchoalveolar lavage (BAL) fluid samples from 107 patients and categorized them as never or ever-smokers. We measured the levels of S100A8/9, RAGE, and HMGB1 in the collected samples using enzyme-linked immunosorbent kits. Immunohistochemical staining was also performed to assess the expression of S100A8/9, CD11b, and CD8 in lung cancer tissues. The correlation between the expression of these proteins and the clinical characteristics of patients with NSCLC was also explored. RESULTS: The expression of S100A8/A9, RAGE, and HMGB was significantly correlated with smoking status and was higher in people with a history of smoking or who were currently smoking. There was a positive correlation between serum and BAL fluid S100A8/9 levels. The expression of S100A8/A9 and CD8 in lung tumor tissues was significantly correlated with smoking history in patients with NSCLC. Ever-smokers, non-adenocarcinoma histology, and high PD-L1 expression were significant factors predicting high serum S100A8/9 levels in multivariate analysis. CONCLUSION: The S100A8/9-RAGE pathway and CD8 expression were increased in smoking-related NSCLC patients. The S100A8/9-RAGE pathway could be a promising biomarker for chronic airway inflammation and carcinogenesis in smoking-related lung diseases.


Assuntos
Calgranulina A , Calgranulina B , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Inflamação , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fumar/efeitos adversos
9.
J Ethnopharmacol ; 322: 117573, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38110133

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Syzygium cumini (L.) Skeels (SC), an ancient medicinal plant, is used as a complementary and alternative medicine for treating diabetes mellitus and its associated complications, such as diabetic nephropathy (DN). Phytochemicals present in SC homeopathic formulations possess anti-glycemic, anti-glycation, anti-inflammatory, and antioxidant properties. Additionally, the non-enzymatic formation of advanced glycation end products (AGEs) increases during hyperglycemia in diabetes. AGEs interaction with their receptor of AGEs (RAGE) promotes inflammation via Nuclear Factor-κB (NF-κB) and the accumulation of Extracellular Matrix (ECM) proteins, contributing to the renal dysfunction in DN. However, the molecular mechanism through which SC formulations interact with the AGEs-RAGE-NF-κB pathway has not yet been investigated. AIM: This study aims to examine the impact of SC formulations on the RAGE-NF-κB pathway and ECM protein modifications in glycation-induced DN using a molecular approach. MATERIALS AND METHODS: Human serum albumin (10 mg/ml) was glycated with MGO (55 mM) in the presence of SC formulations - Mother tincture (MT), 30C, 200C for 7 days. Glycated samples were added to renal cells (HEK 293) for 24 h. Subsequently, cellular gene and protein expressions of RAGE, NF-κB, vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen IV (Col IV), and fibronectin were determined using RT-qPCR and Western blot analysis. The immunofluorescence, luciferase assay, and chromatin immunoprecipitation techniques were employed to gain insights into glycation-induced NF-κB nuclear translocation, transcriptional activity, and its effect on RAGE promoter activity in SC-treated cells. RESULTS: SC formulations significantly downregulated glycation-induced elevated levels of RAGE and NF-κB. Mechanistically, SC formulations prevented NF-κB nuclear translocation, transcriptional activity, and RAGE promoter activity. Also, SC formulations significantly attenuated glycation-enhanced expressions of inflammatory cytokines (IL-6, TNF-α, and VEGF) and ECM proteins (Col IV and fibronectin). CONCLUSION: Our findings enlighten the molecular mechanism of SC in DN by targeting the AGEs-RAGE-NF-κB signaling pathway, inflammatory responses, and ECM accumulation. Hence, the study validates the protective role of SC formulations and signifies its novel potential for treating DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Syzygium , Humanos , NF-kappa B/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fibronectinas , Fator A de Crescimento do Endotélio Vascular , Reação de Maillard , Interleucina-6 , Células HEK293 , Fator de Necrose Tumoral alfa
10.
Cell Rep Med ; 4(11): 101266, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944530

RESUMO

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes. In vitro THP1-based experiments indicate that monocytes bind the SARS-CoV-2 S1-receptor binding domain (RBD) via RAGE, pointing to RAGE-Spike interaction enabling monocyte infection. Thus, our results demonstrate that RAGE is a functional receptor of SARS-CoV-2 contributing to COVID-19 severity.


Assuntos
COVID-19 , Humanos , Monócitos , Pandemias , Receptor para Produtos Finais de Glicação Avançada/genética , SARS-CoV-2
11.
FASEB J ; 37(11): e23259, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37855749

RESUMO

Myocardial fibrosis (MF) is the characteristic pathological feature of various cardiovascular diseases that lead to heart failure (HF) or even fatal outcomes. Alternatively, activated macrophages are involved in the development of fibrosis and tissue remodeling. Although the receptor for advanced glycation end products (RAGE) is involved in MF, its potential role in regulating macrophage function in cardiac fibrosis has not been fully investigated. We aimed to determine the role of macrophage RAGE in transverse aortic constriction (TAC)-induced MF. In this study, we found that RAGE expression was markedly increased in the infiltrated alternatively activated macrophages within mice hearts after TAC. RAGE knockout mice showed less infiltration of alternatively activated macrophages and attenuated cardiac hypertrophy and fibrosis compared to the wild-type mice. Our data suggest that mice with macrophage-specific genetic deletion of RAGE were protected from interstitial fibrosis and cardiac dysfunction when subjected to pressure overload, which led to a decreased proportion of alternatively activated macrophages in heart tissues. Our in vitro experiments demonstrated that RAGE deficiency inhibited the differentiation into alternatively activated macrophages by suppressing autophagy activation. In the co-culture system, in vitro polarization of RAW264.7 macrophages toward an alternatively activated phenotype stimulated the expression of α-smooth muscle actin and collagen in cardiac fibroblasts. However, the knockdown of RAGE and inhibition of autophagy in macrophages showed reduced fibroblast-to-myofibroblast transition (FMT). Collectively, our results suggest that RAGE plays an important role in the recruitment and activation of alternatively activated macrophages by regulating autophagy, which contributes to MF. Thus, blockage of RAGE signaling may be an attractive therapeutic target for the treatment of hypertensive heart disease.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Animais , Camundongos , Autofagia , Fibrose , Cardiopatias/metabolismo , Insuficiência Cardíaca/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo
12.
ACS Nano ; 17(22): 22668-22683, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37751401

RESUMO

Complications arising from diabetes can threaten multiple organs. Advanced glycation end products (AGEs) play a significant role in inducing these complications. Highly processed diets and hyperglycemia facilitate the accumulation of AGEs in the body. Interaction between AGEs and their main receptor (RAGE) initiates the transmission of intracellular inflammatory and cell death signals, which ultimately lead to complications. To counter AGEs-induced damage, we developed an siRNA-binding tetrahedral framework nucleic acids (TDN) system, termed Tsi, which combines the potent cell membrane penetrability and serum stability of TDN with the gene-targeting specificity of siRNA-RAGE. Tsi effectively and persistently downregulates the expression of RAGE, thereby suppressing inflammation by blocking the NF-κB pathway as well as exhibiting antioxidant functions. Furthermore, Tsi regulates the pyroptosis state of macrophages via the NLRP3/caspase-1 axis, which inhibits the spread of cell death signals and maintains homeostasis. This is of great significance for the synergistic treatment strategy for systemic complications in patients with refractory hyperglycemia. In summary, this study describes a nanomedicine that targets the RAGE and suppresses AGE-induced inflammation. This nucleic acid drug holds long-lasting efficacy and is independent of lowering hyperglycemia, which provides a strategy for the treatment of diabetic complications and age-related diseases.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Hiperglicemia , Ácidos Nucleicos , Humanos , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , RNA Interferente Pequeno/genética , Complicações do Diabetes/metabolismo , Inflamação/tratamento farmacológico
13.
Mol Med ; 29(1): 113, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605109

RESUMO

OBJECTIVE: To elucidate the mechanism whereby advanced glycation end products (AGEs) accelerate atherosclerosis (AS) and to explore novel therapeutic strategies for atherosclerotic cardiovascular disease. METHODS AND RESULTS: The effect of AGEs on low-density lipoprotein (LDL) transcytosis across endothelial cells (ECs) was assessed using an in vitro model of LDL transcytosis. We observed that AGEs activated the receptor for advanced glycation end products (RAGE) on the surface of ECs and consequently upregulated Caveolin-1, which in turn increased caveolae-mediated LDL transcytosis and accelerated AS progression. Our molecular assessment revealed that AGEs activate the RAGE-NF-κB signaling, which then recruits the NF-κB subunit p65 to the RAGE promoter and consequently enhances RAGE transcription, thereby forming a positive feedback loop between the NF-κB signaling and RAGE expression. Increased NF-κB signaling ultimately upregulated Caveolin-1, promoting LDL transcytosis, and inhibition of RAGE suppressed AGE-induced LDL transcytosis. In ApoE-/- mice on a high-fat diet, atherosclerotic plaque formation was accelerated by AGEs but suppressed by EC-specific knockdown of RAGE. CONCLUSION: AGEs accelerate the development of diabetes-related AS by increasing the LDL transcytosis in ECs through the activation of the RAGE/NF-κB/Caveolin-1 axis, which may be targeted to prevent or treat diabetic macrovascular complications.


Assuntos
Aterosclerose , NF-kappa B , Animais , Camundongos , Receptor para Produtos Finais de Glicação Avançada/genética , Caveolina 1/genética , Células Endoteliais , Transcitose , Produtos Finais de Glicação Avançada
14.
J Mol Med (Berl) ; 101(8): 1015-1028, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37462767

RESUMO

Multiple molecular pathways including the receptor for advanced glycation end-products-diaphanous related formin 1 (RAGE-Diaph1) signaling are known to play a role in diabetic peripheral neuropathy (DPN). Evidence suggests that neuropathological alterations in type 1 diabetic spinal cord may occur at the same time as or following peripheral nerve abnormalities. We demonstrated that DPN was associated with perturbations of RAGE-Diaph1 signaling pathway in peripheral nerve accompanied by widespread spinal cord molecular changes. More than 500 differentially expressed genes (DEGs) belonging to multiple functional pathways were identified in diabetic spinal cord and of those the most enriched was RAGE-Diaph1 related PI3K-Akt pathway. Only seven of spinal cord DEGs overlapped with DEGs from type 1 diabetic sciatic nerve and only a single gene cathepsin E (CTSE) was common for both type 1 and type 2 diabetic mice. In silico analysis suggests that molecular changes in spinal cord may act synergistically with RAGE-Diaph1 signaling axis in the peripheral nerve. KEY MESSAGES: Molecular perturbations in spinal cord may be involved in the progression of diabetic peripheral neuropathy. Diabetic peripheral neuropathy was associated with perturbations of RAGE-Diaph1 signaling pathway in peripheral nerve accompanied by widespread spinal cord molecular changes. In silico analysis revealed that PI3K-Akt signaling axis related to RAGE-Diaph1 was the most enriched biological pathway in diabetic spinal cord. Cathepsin E may be the target molecular hub for intervention against diabetic peripheral neuropathy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Neuropatias Diabéticas , Hiperglicemia , Animais , Camundongos , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/complicações , Catepsina E , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Nervo Isquiático/patologia , Hiperglicemia/genética , Hiperglicemia/patologia
15.
Breast Cancer Res ; 25(1): 84, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461077

RESUMO

The receptor for advanced glycation end products (RAGE) is implicated in diabetes and obesity complications, as well as in breast cancer (BC). Herein, we evaluated whether RAGE contributes to the oncogenic actions of Insulin, which plays a key role in BC progression particularly in obese and diabetic patients. Analysis of the publicly available METABRIC study, which collects gene expression and clinical data from a large cohort (n = 1904) of BC patients, revealed that RAGE and the Insulin Receptor (IR) are co-expressed and associated with negative prognostic parameters. In MCF-7, ZR75 and 4T1 BC cells, as well as in patient-derived Cancer-Associated Fibroblasts, the pharmacological inhibition of RAGE as well as its genetic depletion interfered with Insulin-induced activation of the oncogenic pathway IR/IRS1/AKT/CD1. Mechanistically, IR and RAGE directly interacted upon Insulin stimulation, as shown by in situ proximity ligation assays and coimmunoprecipitation studies. Of note, RAGE inhibition halted the activation of both IR and insulin like growth factor 1 receptor (IGF-1R), as demonstrated in MCF-7 cells KO for the IR and the IGF-1R gene via CRISPR-cas9 technology. An unbiased label-free proteomic analysis uncovered proteins and predicted pathways affected by RAGE inhibition in Insulin-stimulated BC cells. Biologically, RAGE inhibition reduced cell proliferation, migration, and patient-derived mammosphere formation triggered by Insulin. In vivo, the pharmacological inhibition of RAGE halted Insulin-induced tumor growth, without affecting blood glucose homeostasis. Together, our findings suggest that targeting RAGE may represent an appealing opportunity to blunt Insulin-induced oncogenic signaling in BC.


Assuntos
Neoplasias da Mama , Insulina , Receptor para Produtos Finais de Glicação Avançada , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteômica , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/fisiologia
16.
Oncogene ; 42(35): 2610-2628, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468678

RESUMO

Epithelial/Mesenchymal (E/M) plasticity plays a fundamental role both in embryogenesis and during tumorigenesis. The receptor for advanced glycation end products (RAGE) is a driver of cell plasticity in fibrotic diseases; however, its role and molecular mechanism in triple-negative breast cancer (TNBC) remains unclear. Here, we demonstrate that RAGE signaling maintains the mesenchymal phenotype of aggressive TNBC cells by enforcing the expression of SNAIL1. Besides, we uncover a crosstalk mechanism between the TGF-ß and RAGE pathways that is required for the acquisition of mesenchymal traits in TNBC cells. Consistently, RAGE inhibition elicits epithelial features that block migration and invasion capacities. Next, since RAGE is a sensor of the tumor microenvironment, we modeled acute acidosis in TNBC cells and showed it promotes enhanced production of RAGE ligands and the activation of RAGE-dependent invasive properties. Furthermore, acute acidosis increases SNAIL1 levels and tumor cell invasion in a RAGE-dependent manner. Finally, we demonstrate that in vivo inhibition of RAGE reduces metastasis incidence and expands survival, consistent with molecular effects that support the relevance of RAGE signaling in E/M plasticity. These results uncover new molecular insights on the regulation of E/M phenotypes in cancer metastasis and provide rationale for pharmacological intervention of this signaling axis.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Receptor para Produtos Finais de Glicação Avançada/genética , Linhagem Celular Tumoral , Transdução de Sinais , Fenótipo , Transição Epitelial-Mesenquimal , Movimento Celular , Microambiente Tumoral
17.
Cells ; 12(12)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37371132

RESUMO

BACKGROUND: The soluble form of receptor for advanced glycation end products (sRAGE) have been implicated in the prevention of numerous pathologic states, and highlights as an attractive therapeutic target. Because diets rich in monounsaturated fatty acids (MUFA) reduce postprandial oxidative stress and inflammation that is related to better health during aging, we investigated the association between red blood cell (RBC) fatty acids with circulatory AGE biomarkers and further stratified this correlation based on GG and GA + AA genotype. METHODS: A total of 172 healthy participants (median age = 53.74 ± 0.61 years) were recruited for the study. RBC fatty acid was analysed using gas chromatography and sRAGE was measured using a commercial ELISA kit. RESULTS: The result showed a non-significant correlation between total MUFA with sRAGE however oleic acid (C18:1) exhibited a positive correlation (r = 0.178, p = 0.01) that remained statistically significant (ß = 0.178, p = 0.02) after a stepwise multivariate regression analysis after adjusting for age, BMI and gender. In a univariate analysis, a positive significant correlation between C18:1 and sRAGE in GG genotype (r = 0.169, p = 0.02) and a non-significant correlation with GA + AA genotype (r = 0.192, p = 0.21) was evident. When C18:1 was stratified, a significant difference was observed for oleic acid and G82S polymorphism: low C18:1/GA + AA versus high C18:1/GG (p = 0.015) and high C18:1/GA + AA versus high C18:1/GG (p = 0.02). CONCLUSION: Our study suggests that increased levels of C18:1 may be a potential therapeutic approach in increasing sRAGE in those with GG genotype and play a role in modulating AGE metabolism.


Assuntos
Eritrócitos , Reação de Maillard , Ácido Oleico , Receptor para Produtos Finais de Glicação Avançada , Humanos , Pessoa de Meia-Idade , Alelos , Ácido Oleico/análise , Ácido Oleico/sangue , Ácido Oleico/metabolismo , Polimorfismo Genético , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Eritrócitos/química
18.
Redox Biol ; 63: 102721, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37163872

RESUMO

BACKGROUND: S100 calcium-binding protein A9 (S100A9) is a danger-associated molecular pattern molecule that mediates the inflammatory response. Inflammation is essential in aging-related cardiovascular diseases. However, less is known regarding the role of S100A9 in vascular aging. METHODS: S100A9 null mice were used to investigate the role of S100A9 in aging-related pathologies. Artery rings were used to measure the functional characteristics of vascular with a pressurized myograph. Telomere length, Sirtuin activity, oxidative stress, and endothelial nitric oxide synthetase (eNOS) activity were used to elevate vascular senescence. Intraperitoneal glucose tolerance (IPGTT) and insulin sensitivity test (IST) were employed to investigate the effects of S100A9 on insulin resistance. Inflammation response was reflected by the concentration of inflammatory cytokines. The Toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE) inhibitors were used to identify the downstream molecular mechanisms of S100A9 in aging-induced senescence in endothelial cells. RESULTS: S100A9 expression in vascular increased with aging in mice and humans. Deficiency of S100A9 alleviated vascular senescence in aged mice, as evidenced by increased telomere length, Sirtuin activity, and eNOS activity. Meanwhile, S100A9 knockout improved endothelium-dependent vasodilatation and endothelial continuity in aged mice. Moreover, the increased insulin resistance, oxidative stress, and inflammation were mitigated by S100A9 deletion in aged mice. In vitro, S100A9 induced senescence in endothelial cells, and that effect was blunted by TLR4 but not RAGE inhibitors. CONCLUSION: The present study suggested that S100A9 may contribute to aging-related pathologies and endothelial dysfunction via the TLR4 pathway. Therefore, targeting S100A9/TLR4 signaling pathway may represent a crucial therapeutic strategy to prevent age-related cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Humanos , Camundongos , Animais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Células Endoteliais/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Calgranulina B/farmacologia , Inflamação/genética , Inflamação/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo
19.
Sci Rep ; 13(1): 8002, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198231

RESUMO

Rheumatoid arthritis (RA) is a risk factor for atherosclerotic cardiovascular diseases (CVD). Given the critical roles of the immune system and inflammatory signals in the pathogenesis of CVD, we hypothesized that interrogation of CVD-related proteins using integrative genomics might provide new insights into the pathophysiology of RA. We utilized two-sample Mendelian randomization (MR) for causal inference between circulating protein levels and RA by incorporating genetic variants, followed by colocalization to characterize the causal associations. Genetic variants from three sources were obtained: those associated with 71 CVD-related proteins measured in nearly 7000 Framingham Heart Study participants, a published genome-wide association study (GWAS) of RA (19 234 cases, 61 565 controls), and GWAS of rheumatoid factor (RF) levels from the UK Biobank (n = 30 565). We identified the soluble receptor for advanced glycation end products (sRAGE), a critical inflammatory pathway protein, as putatively causal and protective for both RA (odds ratio per 1-standard deviation increment in inverse-rank normalized sRAGE level = 0.364; 95% confidence interval 0.342-0.385; P = 6.40 × 10-241) and RF levels (ß [change in RF level per sRAGE increment] = - 1.318; SE = 0.434; P = 0.002). Using an integrative genomic approach, we highlight the AGER/RAGE axis as a putatively causal and promising therapeutic target for RA.


Assuntos
Artrite Reumatoide , Doenças Cardiovasculares , Humanos , Receptor para Produtos Finais de Glicação Avançada/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Artrite Reumatoide/genética , Polimorfismo de Nucleotídeo Único , Doenças Cardiovasculares/complicações , Produtos Finais de Glicação Avançada
20.
Obesity (Silver Spring) ; 31(7): 1825-1843, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37231626

RESUMO

OBJECTIVE: Optimal body mass and composition as well as metabolic fitness require tightly regulated and interconnected mechanisms across tissues. Disturbances in these regulatory networks tip the balance between metabolic health versus overweight and obesity and their complications. The authors previously demonstrated roles for the receptor for advanced glycation end products (RAGE) in obesity, as global- or adipocyte-specific deletion of Ager (the gene encoding RAGE) protected mice from high-fat diet-induced obesity and metabolic dysfunction. METHODS: To explore translational strategies evoked by these observations, a small molecule antagonist of RAGE signaling, RAGE229, was administered to lean mice and mice with obesity undergoing diet-induced weight loss. Body mass and composition and whole body and adipose tissue metabolism were examined. RESULTS: This study demonstrates that antagonism of RAGE signaling reduced body mass and adiposity and improved glucose, insulin, and lipid metabolism in lean male and female mice and in male mice with obesity undergoing weight loss. In adipose tissue and in human and mouse adipocytes, RAGE229 enhanced phosphorylation of protein kinase A substrates, which augmented lipolysis, mitochondrial function, and thermogenic programs. CONCLUSIONS: Pharmacological antagonism of RAGE signaling is a potent strategy to optimize healthful body mass and composition and metabolic fitness.


Assuntos
Tecido Adiposo , Obesidade , Masculino , Camundongos , Feminino , Humanos , Animais , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica , Termogênese/genética , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...